October 23, 2020

X-ray mediated scintillation increases synaptic activity via Cerium-doped LSO and Channelrhodopsin-2

Optogenetics is a widely used tool for studying neural circuits. However, non-invasive methods for light delivery in the brain are needed to avoid physical damage typically caused by intracranial insertion of light guides. An innovative strategy could employ X-ray activation of radioluminescent particles (RLPs) to emit localized light. We previously reported that RLPs composed of cerium doped lutetium oxyorthosilicate (LSO:Ce), an inorganic scintillator that emits blue light, are biocompatible with neuronal function and synaptic transmission. However, little is known about the consequences of acute X-ray exposure on synaptic function and long-term plasticity. Furthermore, modulation of neuronal or synaptic function by X-ray induced radioluminescence from RLPs has not yet been demonstrated. Here we show that 30 minutes of X-ray exposure at a rate of 0.042 Gy/second caused no change in the strength of basal glutamatergic transmission during extracellular dendritic field recordings in mouse hippocampal slices. Additionally, long-term potentiation (LTP), a robust measure of synaptic integrity, was able to be induced after X-ray exposure and expressed at a magnitude not different from control conditions (absence of X-rays). This is important as synaptic plasticity is critical to learning and memory. Next, we used molecular and electrophysiological approaches to determine if X-ray dependent radioluminescence emitted from RLPs can activate light sensitive proteins. We found that X-ray stimulation of RLPs elevated cAMP levels in HEK293T cells expressing OptoXR, a chimeric opsin receptor that combines the extracellular light-sensitive domain of channelrhodopsin-2 (ChR2) with an intracellular second messenger signaling cascade. This demonstrates that X-ray radioluminescence from LSO:Ce particles can activate OptoXR. Next, we tested whether X-ray activation of the RLPs can enhance synaptic activity in whole-cell recordings from hippocampal neurons expressing ChR2, both in cell culture and acute hippocampal slices. Importantly, X-ray radioluminescence caused an increase in the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in both systems, indicating activation of ChR2 and excitation of neurons. Together, our results show that X-ray activation of LSO:Ce particles can heighten cellular and synaptic function. The combination of LSO:Ce inorganic scintillators and X-rays is therefore a viable method for optogenetics as an alternative to more invasive light delivery methods.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: