January 27, 2021

Tinnitus-like “hallucinations” elicited by sensory deprivation in an entropy maximization recurrent neural network

Sensory deprivation has long been known to cause hallucinations or phantom sensations, the most common of which is tinnitus induced by hearing loss, affecting 10-20% of the population. An observable hearing loss, causing auditory sensory deprivation over a band of frequencies, is present in over 90% of people with tinnitus. Existing plasticity-based computational models for tinnitus are usually driven by homeostasis mechanisms, modeled to fit phenomenological findings. Here, we use an objective-driven learning algorithm to model an early auditory processing neuronal network, e.g., in the dorsal cochlear nucleus. The learning algorithm maximizes the network’s output entropy by learning the feed-forward and recurrent interactions in the model. We show that the connectivity patterns and responses learned by the model display several hallmarks of early auditory neuronal networks. We further demonstrate that attenuation of peripheral inputs drives the recurrent network towards its critical point and transition into a tinnitus-like state. In this state, the network activity resembles responses to genuine inputs even in the absence of external stimulation, namely, it hallucinates auditory responses. These findings demonstrate how objective-driven plasticity mechanisms that normally act to optimize the network’s input representation can also elicit pathologies such as tinnitus as a result of sensory deprivation.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: