March 7, 2021

The Polyadenosine RNA Binding Protein ZC3H14 is Required in Mice for Proper Dendritic Spine Density

ZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), an evolutionarily conserved member of a class of tandem zinc finger (CCCH) polyadenosine (polyA) RNA binding proteins, is associated with a form of heritable, nonsyndromic autosomal recessive intellectual disability. Previous studies of a loss of function mouse model, Zc3h14{triangleup}ex13/{triangleup}ex13, provide evidence that ZC3H14 is essential for proper brain function, specifically for working memory. To expand on these findings, we analyzed the dendrites and dendritic spines of hippocampal neurons from Zc3h14{triangleup}ex13/{triangleup}ex13 mice, both in situ and in vitro. These studies reveal that loss of ZC3H14 is associated with a decrease in total spine density in hippocampal neurons in vitro as well as in the dentate gyrus of 5-month old mice analyzed in situ. This reduction in spine density in vitro results from a decrease in the number of mushroom-shaped spines, which is rescued by exogenous expression of ZC3H14. We next performed biochemical analyses of synaptosomes prepared from whole wild-type and Zc3h14{triangleup}ex13/{triangleup}ex13 mouse brains to determine if there are changes in steady state levels of postsynaptic proteins upon loss of ZC3H14. We found that ZC3H14 is present within synaptosomes and that a crucial postsynaptic protein, CaMKII, is significantly increased in these synaptosomal fractions upon loss of ZC3H14. Together, these results demonstrate that ZC3H14 is necessary for proper dendritic spine density in cultured hippocampal neurons and in some regions of the mouse brain. These findings provide insight into how a ubiquitously expressed RNA binding protein leads to neuronal-specific defects that result in brain dysfunction.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: