October 27, 2020

Thalamocortical spectral transmission relies on balanced input strengths

The thalamus is a key element of sensory transmission in the brain, as all sensory information is processed by the thalamus before reaching the cortex. The thalamus is known to gate and select sensory streams through a modulation of its internal activity in which spindle oscillations play a preponderant role, but the mechanism underlying this process is not completely understood. In particular, how do thalamocortical connections convey stimulus- driven information selectively over the background of thalamic internally generated activity (such as spindle oscillations)? Here we investigate this issue with a spiking network model of connectivity between thalamus and primary sensory cortex reproducing the local field potential of both areas. We found two features of the thalamocortical dynamics that filter out spindle oscillations: i) spindle oscillations are weaker in neurons projecting to the cortex, ii) the resonance dynamics of cortical networks selectively blocks frequency in the range encompassing spindle oscillations. This latter mechanism depends on the balance of the strength of thalamocortical connections toward excitatory and inhibitory neurons in the cortex. Our results pave the way toward an integrated understanding of the sensory streams traveling between the periphery and the cortex.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: