October 23, 2020

Spatial information transfer in hippocampal place cells depends on trial-to-trial variability, symmetry of place-field firing and biophysical heterogeneities

The relationship between the feature-tuning curve and information transfer profile of individual neurons provides vital insights about neural encoding. However, the relationship between the spatial tuning curve and spatial information transfer of hippocampal place cells remains unexplored. Here, employing a stochastic search procedure spanning thousands of models, we arrived at 127 conductance-based place-cell models that exhibited signature electrophysiological characteristics and sharp spatial tuning, with parametric values that exhibited neither clustering nor strong pairwise correlations. We introduced trial-to-trial variability in responses and computed model tuning curves and information transfer profiles, using stimulus-specific (SSI) and mutual (MI) information metrics, across locations within the place field. We found spatial information transfer to be heterogeneous across models, but to reduce consistently with increasing degrees of variability. Importantly, whereas reliable low-variability responses implied that maximal information transfer occurred at high-slope regions of the tuning curve, increase in variability resulted in maximal transfer occurring at the peak-firing location in a subset of models. Moreover, experience-dependent asymmetry in place-field firing introduced asymmetries in the information transfer computed through MI, but not SSI, and the impact of activity-dependent variability on information transfer was minimal compared to activity-independent variability. Biophysically, we unveiled a many-to-one relationship between different ion channels and information transfer, and demonstrated critical roles for N-methyl-D-aspartate receptors, transient potassium and dendritic sodium channels in regulating information transfer. Our results emphasize the need to account for trial-to-trial variability, tuning-curve shape and biological heterogeneities while assessing information transfer, and demonstrate ion-channel degeneracy in the regulation of spatial information transfer.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: