October 31, 2020

Sonlicromanol improves neuronal network dysfunction and transcriptome changes linked to m.3243A > G heteroplasmy in iPSC-derived neurons

Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) is often caused by an adenine to guanine mutation at m.3243 (m.3243A>G) of the MT-TL1 gene (tRNAleu(UUR)). To understand how this mutation affects the nervous system, we differentiated human induced-pluripotent stem cells (iPSCs) into excitatory neurons with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function from MELAS patients with the m.3243A>G mutation. We combined micro-electrode array (MEA) measurements with RNA sequencing (MEA-seq) and found that the m.3243A>G mutation affects expression of genes involved in mitochondrial respiration- and presynaptic function, as well as non-cell autonomous processes in co-cultured astrocytes. Finally, we show that the clinical II stage drug sonlicromanol (KH176) improved neuronal network activity in a patient-specific manner when treatment is initiated early in development. This was intricately linked with changes in the neural transcriptome. Overall, MEA-seq is a powerful approach to identify mechanisms underlying the m.3243A>G mutation and to study the effect of pharmacological interventions in iPSC-derived neurons.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: