February 25, 2021

Sex-specific maturational trajectory of endocannabinoid plasticity in the rat prefrontal cortex

The prefrontal cortex (PFC) develops until early adulthood in rodents and humans, but how synaptic plasticity evolves throughout postnatal development is not known. Here, we used a cross-sectional approach to establish the postnatal maturational trajectories of intrinsic properties and synaptic plasticity in the PFC of rats of both sexes. We found that while layer 5 PFC pyramidal neurons from rats of both sexes displayed similar current-voltage relationships, rheobases and resting potentials across all age groups, excitability was lower in female adults compared to the other developmental stages. NMDAR-dependent long-term potentiation and mGluR2-3-mediated long-term depression (LTD) were equally expressed at the juvenile, pubescent and adult developmental stages in animals of both sexes. However, the developmental course of endocannabinoid (eCB)-mediated LTD was sexually dimorphic. First, eCB-LTD started at the juvenile period in females, but although CB1R were functional in both sexes at all developmental stages, eCB-LTD first manifestation was delayed to pubescence in male. Second, eCB-LTD engaged distinct receptors in male and female depending on their developmental stages. Female rats employ both CB1R and TRPV1R to produce eCB-LTD at the juvenile stage but solely CB1R at pubescence followed by only TRPV1R at adulthood. In contrast, in pubescent and adult males eCB-LTD always and exclusively depended on CB1R. Pharmacological blockade of 2AG principal degrading enzyme allowed incompetent male juvenile synapses to express eCB-LTD. The data reveal different maturational trajectories in the PFC of male and female rats and provide new cellular substrates to the sex-specific behavioral and synaptic abnormalities caused by adolescent exposure to cannabinoids.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: