January 16, 2021

Serum response factor is essential for synaptic maturation in the hippocampus

Disturbances of gene expression patterns that occur during brain development can severely affect signal transmission, connectivity, and plasticity, key features that underlie memory formation and storage in neurons. Abnormalities at the molecular level can manifest as changes in the structural and functional plasticity of dendritic spines that harbor excitatory synapses. This can lead to such developmental neuropsychiatric conditions as Autism spectrum disorders, intellectual disabilities, and schizophrenia. The present study investigated the role of the major transcriptional regulator serum response factor (SRF) in synapse maturation and its impact on behavioral phenotypes. Using in vitro and in vivo models of early postnatal SRF deletion, we studied its influence on key morphological and physiological hallmarks of spine development. The elimination of SRF in developing neurons resulted in a phenotype of immature dendritic spines and impairments in excitatory transmission. Moreover, using a combination of molecular and imaging techniques, we showed that SRF-depleted neurons exhibited a lower level of specific glutamate receptor mRNAs and a decrease in their surface expression. Additionally, the early postnatal elimination of SRF in hippocampal CA1 excitatory neurons caused spine immaturity and a specific social deficit that is frequently observed in autism patients. Altogether, our data suggest that the regulation of structural and functional dendritic spine maturation begins at the stage of gene transcription, which underpins the crucial role of such transcription factors as SRF. Moreover, disturbances of the postnatal expression of SRF translate to behavioral changes in adult animals.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: