April 14, 2021

RGS14 modulates locomotor behavior and ERK signaling induced by environmental novelty and cocaine within discrete limbic structures

Rationale: In rodents, exposure to novel environments or psychostimulants promotes locomotor activity. Indeed, locomotor reactivity to novelty strongly predicts behavioral responses to psychostimulants in animal models of addiction. RGS14 is a plasticity restricting protein with unique functional domains that enable it to suppress ERK-dependent signaling as well as regulate G protein activity. Although recent studies show that RGS14 is expressed in multiple limbic regions implicated in psychostimulant- and novelty-induced hyperlocomotion, its function has been studied almost entirely in the context of hippocampal physiology and hippocampus-dependent behaviors. Objective: We sought to determine whether RGS14 modulates novelty- and psychostimulant-induced locomotion and neuronal activity. Methods: We assessed Rgs14 knockout (RGS14 KO) mice and wild-type (WT) littermate controls using novelty-induced locomotion (NIL) and cocaine-induced locomotion (CIL) behavioral tests with subsequent quantification of c-fos and phosphorylated ERK (pERK) induction in limbic regions that express RGS14. Results: Compared to WT controls, RGS14 KO mice exhibited attenuated locomotor responses in the NIL test, driven by avoidance of the center of the novel environment. By contrast, RGS14 KO mice demonstrated augmented peripheral locomotion in the CIL test conducted in either a familiar or novel environment. The absence of RGS14 enhanced induction of c-fos and pERK in the central amygdala and hippocampus (areas CA1 and CA2) when cocaine was administered in a novel environment. Conclusions: RGS14 regulates novelty- and psychostimulant-induced hyperlocomotion, particularly with respect to thigmotaxis. Further, our findings suggest RGS14 may reduce neuronal activity in discrete limbic subregions by inhibiting ERK-dependent signaling and transcription.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: