October 31, 2020

Representation of Color, Form, and their Conjunctionacross the Human Ventral Visual Pathway

Despite decades of neuroscience research, our understanding of the relationship between color and form processing in the primate ventral visual pathway remains incomplete. Using fMRI multivoxel pattern analysis, this study examined the coding of color with both a simple form feature (orientation) and a mid-level form feature (curvature) in human early visual areas V1 to V4, posterior and central color regions, and shape areas in ventral and lateral occipito-temporal cortex. With the exception of the central color region (which showed color but not form decoding), successful color and form decoding was found in all other regions examined, even for color and shape regions showing univariate sensitivity to one feature. That said, all regions exhibited significant feature decoding biases, with decoding from color and shape regions largely consistent with their univariate preferences. Color and form are thus represented in neither a completely distributed nor a completely modular manner, but a biased distributed manner. Interestingly, coding of one feature in a brain region was always tolerant to changes in the other feature, indicating relative independence of color and form coding throughout the ventral visual cortex. Although evidence for interactive coding of color and form also existed, the effect was weak and only existed for color and orientation conjunctions in early visual cortex. No evidence for interactive coding of color and curvature was found. The predominant relationship between color and form coding in the human brain appears to be one of anatomical coexistence (in a biased distributed manner), but representational independence.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: