December 1, 2020

Orienting spatial attention in time: Lateralized alpha power reflects spatio-temporal filtering

The deployment of neural alpha (8-12 Hz) lateralization in service of spatial attention is well-established: Alpha power increases in the cortical hemisphere ipsilateral to the attended hemifield, and decreases in the contralateral hemisphere, respectively. Much less is known about humans ability to deploy such alpha lateralization in time, and to thus exploit alpha power as a spatio-temporal filter. Here we show that spatially lateralized alpha power does signify – beyond the direction of spatial attention – the distribution of attention in time and thereby qualifies as a spatio-temporal attentional filter. Participants (N = 20) selectively listened to spoken numbers presented on one side (left vs right), while competing numbers were presented on the other side. Key to our hypothesis, temporal foreknowledge was manipulated via a visual cue, which was either instructive and indicated the to-be-probed number position (70% valid) or neutral. Temporal foreknowledge did guide participants attention, as they recognized numbers from the to-be-attended side more accurately following valid cues. In the magnetoencephalogram (MEG), spatial attention to the left versus right side induced lateralization of alpha power in all temporal cueing conditions. Modulation of alpha lateralization at the 0.8-Hz presentation rate of spoken numbers was stronger following instructive compared to neutral temporal cues. Critically, we found stronger modulation of lateralized alpha power specifically at the onsets of temporally cued numbers. These results suggest that the precisely timed hemispheric lateralization of alpha power qualifies as a spatio-temporal attentional filter mechanism susceptible to top-down behavioral goals.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: