November 23, 2020

On the organization of the locomotor CPG: insights from split-belt locomotion and mathematical modeling

Rhythmic limb movements during locomotion are controlled by a central pattern generator (CPG) circuits located in the spinal cord. It is considered that these circuits are composed of individual rhythm generators (RGs) for each limb interacting with each other through multiple commissural and propriospinal circuits. The organization and operation of each RG are not fully understood, and different competing theories exist about interactions between its flexor and extensor components, as well as about left-right commissural interactions between the RGs. The central idea of circuit organization proposed in this study is that with an increase of excitatory input to each RGs (or an increase in locomotor speed) the rhythmogenic mechanism within the RGs changes from "flexor-driven" rhythmicity to a "classical half-center" mechanism. We test this hypothesis using our experimental data on changes in duration of stance and swing phases in the intact and spinal cats walking on the ground or tied-belt treadmills (symmetric conditions) or split-belt treadmills with different left and right belt speeds (asymmetric conditions). We compare these experimental data with the results of mathematical modeling, in which simulated CPG circuits operate in similar symmetric and asymmetric conditions with matching or differing control drives to the left and right RGs. The obtained results support the proposed concept of state-dependent changes in RG operation and specific commissural interactions between the RGs. The performed simulations and mathematical analysis of model operation under different conditions provide new insights into CPG organization and limb coordination during locomotion.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: