March 8, 2021

Neurophysiological network dynamics of pitch change detection.

The detection of pitch changes is crucial to sound localization, music appreciation and speech comprehension, yet the brain network oscillatory dynamics involved remain unclear. We used time-resolved cortical imaging in a pitch change detection task. Tone sequences were presented to both typical listeners and participants affected with congenital amusia, as a model of altered pitch change perception. Our data show that tone sequences entrained slow (2-4 Hz) oscillations in the auditory cortex and inferior frontal gyrus, at the pace of tone presentations. Inter-regional signaling at this slow pace was directed from auditory cortex towards the inferior frontal gyrus and motor cortex. Bursts of faster (15-35Hz) oscillations were also generated in these regions, with directed influence from the motor cortex. These faster components occurred precisely at the expected latencies of each tone in a sequence, yielding a form of local phase-amplitude coupling with slower concurrent activity. The intensity of this coupling peaked dynamically at the moment of anticipated pitch changes. We clarify the mechanistic relevance of these observations in relation to behavior as, by task design, typical listeners outperformed amusic participants. Compared to typical listeners, inter-regional slow signaling toward motor and inferior frontal cortices was depressed in amusia. Also, the auditory cortex of amusic participants over-expressed tonic, fast-slow phase-amplitude coupling, pointing at a possible misalignment between stimulus encoding and internal predictive signaling. Our study provides novel insight into the functional architecture of polyrhythmic brain activity in auditory perception and emphasizes active, network processes involving the motor system in sensory integration.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: