November 25, 2020

Isoform transcriptome of developing human brain provides new insights into autism risk variants

Alternative splicing plays important role in brain development, however its global contribution to human neurodevelopmental diseases (NDD) has not been fully investigated. Here, we examined the relationships between splicing isoforms expression in the brain and de novo loss-of-function mutations identified in the patients with NDDs. We constructed isoform transcriptome of the developing human brain, and observed differentially expressed isoforms and isoform co-expression modules undetectable by the gene-level analyses. These isoforms were enriched in loss-of-function mutations and microexons, co-expressed with a unique set of partners, and had higher prenatal expression. We experimentally tested the impact of splice site mutations in five NDD risk genes, including SCN2A, DYRK1A and BTRC, and demonstrated exon skipping. Furthermore, our results suggest that the splice site mutation in BTRC reduces translational efficiency, likely impacting Wnt signaling through impaired degradation of {beta}-catenin. We propose that functional effect of mutations associated with human diseases should be investigated at isoform- rather than gene-level resolution.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: