May 18, 2021

Inositol Polyphosphate-5-phosphatase K (Inpp5k) enhances sprouting of corticospinal tract axons after CNS trauma.

<p>Failure of CNS neurons to mount a significant intrinsic growth response after trauma results in chronic functional deficits after spinal cord injury. Approaches to identify novel axon growth activators include transcriptional and repressor screening of embryonic cortical and retinal ganglion neurons in vitro. These high throughput approaches have identified several candidates; however, their inability to comprehensively model the adult CNS has resulted in their exploitation in vivo failing to stimulate significant anatomical and functional gains. To identify novel cell autonomous axon growth activators while maintaining CNS complexity, we screened intact adult corticospinal neurons (CSNs) undergoing functional plasticity after unilateral pyramidotomy. RNA-seq of intact sprouting corticospinal tract (CST) axons showed an enrichment of genes in the 3-phosphoinositide degradation pathways, including six 5-phosphatases. We explored whether Inositol Polyphosphate-5-phosphatase K (Inpp5k) could enhance CST axon growth in clinical models of CNS trauma. Overexpression of Inpp5k in intact adult CSNs enhanced sprouting of intact CST terminals into the denervated cervical cord after pyramidotomy and cortical stroke lesion. Inpp5k overexpression also stimulated sprouting of CST axons in the cervical cord after acute and chronic severe thoracic spinal contusion. We show that Inpp5k stimulates axon growth by elevating the density of active cofilin in the cytosol of labile growth cones, thus stimulating actin polymerization and enhancing microtubule protrusion into distal filopodia. This study identifies Inpp5k as a novel CST growth activator and underscores the veracity of using in vivo transcriptional screening to identify the next generation of cell autonomous factors capable of repairing the damaged CNS.</p>
<p> bioRxiv Subject Collection: Neuroscience</p>
<p> <a href="http://biorxiv.org/cgi/content/short/2021.04.27.441184v1?rss=1">Read More</a></p>

Leave a Reply

%d bloggers like this: