October 26, 2020

Enhanced synaptic transmission in the extended amygdala and altered excitability in an extended amygdala to brainstem circuit in a Dravet syndrome mouse model

Objective: Dravet syndrome (DS) is a severe, early-onset epilepsy with an increased incidence of sudden death. Evidence of interictal breathing deficits in DS suggest that alterations in subcortical projections to brainstem nuclei may exist, which might be driving comorbidities in DS. The aim of this study was to determine if a subcortical structure, the bed nucleus of the stria terminalis (BNST) in the extended amygdala, is activated by seizures, exhibits changes in excitability, and expresses any alterations in neurons projecting to a brainstem nucleus associated with respiration, stress response and homeostasis. Methods: Experiments were conducted using F1 mice generated by breeding 129.Scn1a+/- mice with wildtype C57BL/6J mice. Immunohistochemistry was performed to quantify neuronal c-fos activation in DS mice after observed spontaneous seizures. Whole cell patch clamp and current clamp electrophysiology recordings were conducted to evaluate changes in intrinsic and synaptic excitability in the BNST. Results: Spontaneous seizures in DS mice significantly enhanced neuronal c-fos expression in the BNST. Further, the BNST had altered AMPA/NMDA postsynaptic receptor composition and showed changes in spontaneous neurotransmission, with greater excitation and decreased inhibition. BNST to parabrachial nucleus (PBN) projection neurons exhibited intrinsic excitability in wildtype mice, while these projection neurons were hypoexcitable in DS mice. Significance: The findings suggest that there is altered excitability in neurons of the BNST, including BNST to PBN projection neurons, in DS mice. These alterations could potentially be driving comorbid aspects of DS outside of seizures, including respiratory dysfunction and sudden death.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: