April 15, 2021

Dentate Gyrus and CA3 GABAergic Interneurons Bidirectionally Modulate Signatures of Internal and External Drive to CA1

Specific classes of GABAergic neurons are thought to play specific roles in regulating information processing in the brain. In the hippocampus, two major classes – parvalbumin-expressing (PV+) and somatostatin-expressing (SST+) neurons – differentially regulate endogenous firing patterns and target different subcellular compartments of principal cells, but how these classes regulate the flow of information throughout the hippocampus is poorly understood. We hypothesized that PV+ and SST+ interneurons in the dentate gyrus (DG) and CA3 might differentially modulate CA3 patterns of output, thereby altering the influence of CA3 on CA1. We found that while suppressing either interneuron type increased DG and CA3 output, the effects on CA1 were very different. Suppressing PV+ interneurons increased local field potential signatures of coupling from CA3 to CA1 and decreased signatures of coupling from entorhinal cortex to CA1; suppressing SST+ interneurons had the opposite effect. Thus, DG and CA3 PV+ and SST+ interneurons bidirectionally modulate the flow of information through the hippocampal circuit.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: