April 12, 2021

Complexity and graded regulation of neuronal cell type-specific alternative splicing revealed by single-cell RNA sequencing

The enormous neuronal cellular diversity in the mammalian brain, which is highly prototypical and organized in a hierarchical manner, is dictated by cell type-specific gene regulatory programs at the molecular level. Although prevalent in the brain, contribution of alternative splicing (AS) to the molecular diversity across neuronal cell types is just starting to emerge. Here we systematically investigated AS regulation across over 100 transcriptomically defined neuronal types of the adult mouse cortex using deep single cell RNA-sequencing (scRNA-seq) data. We found distinct splicing programs between glutamatergic and GABAergic neurons and between subclasses within each neuronal class, consisting of overlapping sets of alternative exons showing differential splicing at multiple hierarchical levels. Using an integrative approach, our analysis suggests that RNA-binding proteins (RBPs) Celf1/2, Mbnl2 and Khdrbs3 are preferentially expressed and more active in glutamatergic neurons, while Elavl2 and Qk are preferentially expressed and more active in GABAergic neurons. Importantly, these and additional RBPs also contribute to differential splicing between neuronal subclasses at multiple hierarchical levels, and some RBPs drive splicing dynamics that do not conform to the hierarchical structure defined by the transcriptional profiles. Thus, our results suggest graded regulation of AS across neuronal cell types, which provides a molecular mechanism orthogonal to, rather than downstream of, transcriptional regulation in specifying neuronal identity and function.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: