December 3, 2020

Bi-directional encoding of context-based odor signals and behavioral states by the nucleus of the lateral olfactory tract neurons

The nucleus of the lateral olfactory tract (nLOT) is not only a part of the olfactory cortex that receives olfactory sensory inputs from the olfactory bulb, but also one of the cortical amygdala areas that regulates motivational behaviors. To examine how the neural ensemble activity of the nLOT is modulated by motivational processes that occur during various states of learned goal-directed behaviors, we recorded nLOT spike activities of mice performing odor-guided go/no-go tasks for obtaining a water reward. We found that the majority of the nLOT neurons exhibited sharp go-cue excitation and persistent no-go-cue inhibition responses triggered by an odor onset. The bi-directional cue encoding introduced nLOT population response dynamics and provided a high odor decoding accuracy before executing cue-odor-evoked behaviors. The go-cue preferred neurons were also activated in the reward drinking state, indicating context-based odor-outcome associations. These findings suggest that the nLOT neurons play an important role in the translation from context-based odor information to appropriate behavioral motivation.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: