November 25, 2020

Adaptation of spontaneous activity in the developing visual cortex

Spontaneous activity drives the establishment of appropriate connectivity in different circuits during brain development. In the mouse primary visual cortex, two distinct patterns of spontaneous activity occur before vision onset: local low-synchronicity events originating in the retina, and global high-synchronicity events originating in the cortex. We sought to determine the contribution of these activity patterns to jointly organize network connectivity through different activity-dependent plasticity rules. We found that local events shape cortical input selectivity and topography, while global events have a homeostatic role regulating connection strength. To generate robust selectivity, we predicted that global events should adapt their amplitude to the history of preceding cortical activation, and confirmed by analyzing in vivo spontaneous cortical activity. This adaptation led to the sparsification of spontaneous activity on a slower timescale during development, demonstrating the remarkable capacity of the developing sensory cortex to acquire sensitivity to visual inputs after eye-opening.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: