October 31, 2020

Abl2:cortactin interactions regulate dendritic spine stability via control of a stable filamentous actin pool.

Dendritic spines are enriched with stable and dynamic actin filaments, which determine their structure and shape. Disruption of the Abl2/Arg nonreceptor tyrosine kinase in mice compromises spine stability and size. We provide evidence that binding to cortactin tethers Abl2 in spines, where Abl2 and cortactin maintain the small pool of stable actin required for dendritic spine stability. Using fluorescence recovery after photobleaching of GFP-actin, we find that disruption of Abl2:cortactin interactions eliminates stable actin filaments in dendritic spines, significantly reducing spine density. A subset of spines remaining after Abl2 depletion retain their stable actin pool and undergo activity-dependent spine enlargement associated with increased cortactin levels. Finally, tonic increases in synaptic activity rescue spine loss upon Abl2 depletion by promoting cortactin enrichment in vulnerable spines. Together, our findings strongly suggest Abl2:cortactin interactions promote spine stability by maintaining pools of stable actin filaments in spines.

 bioRxiv Subject Collection: Neuroscience

 Read More

Leave a Reply

%d bloggers like this: